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The mimetic finite difference (MFD) meth-
ods mimic important properties of physical and
mathematical models. As the result, conserva-
tion laws, solution symmetries, and the funda-
mental identities of the vector and tensor calcu-
lus are held for discrete models. The existing
MFD methods for solving diffusion-type prob-
lems on arbitrary meshes aresecond-orderac-
curate for the conservative variable (temperature,
pressure, energy, etc.) and onlyfirst-orderaccu-
rate for its flux. In many physical simulations
such as reactive transport in porous media, com-
pressible flows, etc., the flux accuracy makes sig-
nificant impact on evolution of conservative quan-
tities. We developed new high-order MFD meth-
ods which aresecond-orderaccurate for both
conservative variable and its flux [1]. These meth-
ods are well suited for simulations on arbitrary
polygonal meshes.

Modelling with arbitrary polygonal meshes has
a number of advantages. Such meshes allow to
describe accurately small, detailed structures such
as tilted layers, irregular inclusions, rugged sur-
faces and interfaces, etc. The polygonal meshes
cover the plane more efficiently than triangular
meshes which eventually reduces the number of
discrete unknowns without lose of accuracy. The
locally refined meshes, used to improve resolu-
tion in region of interest, are particular examples
of polygonal meshes with degenerate elements.

There are a few fundamentally different ap-
proaches to increase accuracy of discretiza-
tion methods. Finite volume and finite differ-
ence methods increase stencils of discrete oper-
ators which impose severe restrictions on mesh
smoothness. These methods are usually applied
on smooth meshes and lose accuracy on rough

ones. The finite element and spectral element
methods increase the number of unknowns inside
each element but impose severe restrictions on the
shape of admissible mesh elements. To develop
new high-order MFD methods, we blend ideas
of the finite element [4] and the low-order MFD
methods [2].

Sample meshes used in analysis. Both randomly
perturbed (left) and polygonal (right) meshes are
challenging tests for any discretization method.
The new high-order MFD methods have similar
approximation properties on both meshes.

Convergence rates for the low-order MFD (blue)
and the new high-order MFD (red) methods on
randomly perturbed quadrilateral meshes for a
manufactured solution. Both methods are second-
order accurate for the conservative variable u.
The high-order MFD method is second-order ac-
curate for the flux~F, while the low-order MFD
method is only first-order accurate.

http://math.lanl.gov/, T-7, MS B284, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545



High-order Mimetic Finite Difference Methods on Arbitrary Meshes

(a) (b)

Schematic illustration of degrees of freedom in the
low-order (a) and high-order (b) MFD methods.
One arrow represents the average normal flux
through the edge. Two close arrows represent the
average normal flux (0-th moment) through the
edge and its first moment. The solid circles repre-
sent degrees of freedom for conservative variable.

In our analysis we consider a stationary diffu-
sion problem for the conservative variableu and
its flux ~F :

div~F = q, ~F = −K∇u.

In the high-order MFD method, the scalar func-
tion u is represented by one unknown, its average
value, in each mesh element. The flux~F (the vec-
tor function) is represented by two unknowns on
each mesh edge, the number which is twice more
than in the low-order MFD method.

Similarly to the low-order MFD method, the
key step in the high-order MFD method is the def-
inition of the inner product in the space of discrete
fluxes. This inner product can be also viewed as a
quadrature rule for the integral of a dot-product of
two continuous fluxes. Since the chosen degrees
of freedom are normal fluxes on mesh edges, the
construction of this inner product is a non-trivial
task. Due to additivity of integration, this in-
ner product can be defined independently on each
mesh element. We developed two methods for
building elemental inner products [1].

The first method extends further the ideas of
the low-order Kuznetsov-Repin finite element
method [3]. We divide virtually each polygonal
element into triangles and use the existing for-
mula for exact integration of linear fluxes on a
triangle [4]. The virtual triangular partition intro-

duces additional flux unknowns on interior edges.
Half of these unknowns, 0-th moments of the
normal flux, are eliminated using the Kuznetsov-
Repin approach. The remaining unknowns (1-st
moments) are eliminated by mimicking integral
identities for particular spaces of vector functions.
In the finite element community this technique
is know as the static condensation. The method
is useful for problems where the flux has to be
recovered at some points inside a polygonal ele-
ment.

The second method was inspired in part by
the methods developed in [2]. Only boundary
data (normals to polygon edges, length of edges,
and quadrature rules for edge integrals) are used
to build the elemental inner product. Since, no
auxiliary triangular partition is required, the pro-
posed method can be easily applied on meshes
with degenerate polygons, which appear in adap-
tive mesh refinement (AMR) methods, and non-
convex polygons, which appear in moving mesh
methods.
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